

Slow-Pitch Softball

SDMAY25-11 Andrew, Casey, Josh, Ethan, Sully, and Cameron

Project Overview

Slow-pitch softball has specific specifications for a legal pitch with maximum and minimum height requirements.

Our deliverable for this project is a portable and user interactive application to call illegal pitches with three main requirements:

- Accurately detect a softball's maximum height on a pitch
- Trigger an audible "Illegal" if the pitch is outside of the max/min range
- Acts as a faster and more accurate height officiary than umpires

Our Client / Advisors

Dr. Nicholas Fila

Client/Advisor

Dr. Phillip Jones

Technical Advisor

Our Current Design

The **environment** in which the game is played needs to be calibrated.

The **object and height detection** will be done through OpenCV in C++.

The **user interface** of the mobile application will be built in Flutter.

Current Design Pros/Cons Table

Pros	Cons
• Portability/ease of access (mobile application)	• Mobile processing limitations
 Simultaneous iOS & Android development (Flutter) Real-time analysis 	• Accuracy in variable conditions (e.g. lighting, camera position)

Technical Complexity Analysis

- Real-time image processing, object detection, and height calculation with OpenCV
 - ML + Non-ML approach
- Integration with Flutter app, finding a way to bridge C++ to Dart
- Optimizing image processing to accommodate for mobile device capabilities

+

What do our users need and how is our current model accommodating them?

Human Needs

Adaptive Detection

Users need a system that can be used with a variety of fields, phones, and lighting conditions

Calibration

We offer a one-time lens distortion calibration. Each tracking session calibrates field and lighting conditions

Human Needs

Reliable Calls

Players, fans, and umpires need a system to reliably make accurate calls.

ML + NML

Integrating both machine learning and non-machine learning ensures accurate object detection and preserves the integrity of the game.

Human Needs

Simple Design

Users need a system that can be easily and efficiently set up for officiating games

Guided Set-up

Step-by-step guided messages help users calibrate and place the application for continuous officiating. Lens/Color Calibration

3

Economic Needs

Pricing

+ Free

Availability

- + Available on iOS and Android
- May need to restrict based on device specs

Convenience

- + No external camera or sensors
- Increases difficulty of development

Technical Needs Height Calculation

- 1. OpenCV Calibrations
- 2. Combination of YOLO, KCF, and OpenCV for object detection.
- 3. Calculates height based on known distances.
- 4. Alerts "Illegal" when height is outside the min and max range

Mobile App

Flutter

02

- Accessible to almost anyone.
- Runs height calculation programs on local device from main screen.
- Contains screens for settings and pitch history.

* Conclusion

- Our design prototypes are beginning to meet our user's needs.
- We must continue refining and integrating our detection techniques into our mobile application.
- The user experience should continue to be our greatest influence on our Flutter application.

